Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.086
1.
Bioorg Med Chem ; 104: 117700, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38583236

Adenosine Deaminases Acting on RNA (ADARs) catalyze the deamination of adenosine to inosine in double-stranded RNA (dsRNA). ADARs' ability to recognize and edit dsRNA is dependent on local sequence context surrounding the edited adenosine and the length of the duplex. A deeper understanding of how editing efficiency is affected by mismatches, loops, and bulges around the editing site would aid in the development of therapeutic gRNAs for ADAR-mediated site-directed RNA editing (SDRE). Here, a SELEX (systematic evolution of ligands by exponential enrichment) approach was employed to identify dsRNA substrates that bind to the deaminase domain of human ADAR2 (hADAR2d) with high affinity. A library of single-stranded RNAs was hybridized with a fixed-sequence target strand containing the nucleoside analog 8-azanebularine that mimics the adenosine deamination transition state. The presence of this nucleoside analog in the library biased the screen to identify hit sequences compatible with adenosine deamination at the site of 8-azanebularine modification. SELEX also identified non-duplex structural elements that supported editing at the target site while inhibiting editing at bystander sites.


Adenosine Deaminase , Purine Nucleosides , Ribonucleosides , Humans , Adenosine , Adenosine Deaminase/metabolism , Base Sequence , RNA, Double-Stranded , RNA, Guide, CRISPR-Cas Systems
2.
FEBS Lett ; 598(9): 1080-1093, 2024 May.
Article En | MEDLINE | ID: mdl-38523059

Recent developments in sequencing and bioinformatics have advanced our understanding of adenosine-to-inosine (A-to-I) RNA editing. Surprisingly, recent analyses have revealed the capability of adenosine deaminase acting on RNA (ADAR) to edit DNA:RNA hybrid strands. However, edited inosines in DNA remain largely unexplored. A precise biochemical method could help uncover these potentially rare DNA editing sites. We explore maleimide as a scaffold for inosine labeling. With fluorophore-conjugated maleimide, we were able to label inosine in RNA or DNA. Moreover, with biotin-conjugated maleimide, we purified RNA and DNA containing inosine. Our novel technique of inosine chemical labeling and affinity molecular purification offers substantial advantages and provides a versatile platform for further discovery of A-to-I editing sites in RNA and DNA.


Adenosine , Inosine , RNA Editing , Inosine/chemistry , Inosine/metabolism , Adenosine/chemistry , Adenosine/metabolism , Adenosine/analogs & derivatives , Deamination , DNA/chemistry , DNA/metabolism , Maleimides/chemistry , Adenosine Deaminase/metabolism , Adenosine Deaminase/chemistry , RNA/chemistry , RNA/metabolism , Staining and Labeling/methods , Humans , Fluorescent Dyes/chemistry , Biotin/chemistry , Biotin/metabolism
3.
Chem Res Toxicol ; 37(3): 476-485, 2024 03 18.
Article En | MEDLINE | ID: mdl-38494904

Mechanisms underlying methylene diphenyl diisocyanate (MDI) and other low molecular weight chemical-induced asthma are unclear and appear distinct from those of high molecular weight (HMW) allergen-induced asthma. We sought to elucidate molecular pathways that differentiate asthma-like pathogenic vs nonpathogenic responses to respiratory tract MDI exposure in a murine model. Lung gene expression differences in MDI exposed immune-sensitized and nonsensitized mice vs unexposed controls were measured by microarrays, and associated molecular pathways were identified through bioinformatic analyses and further compared with published studies of a prototypic HMW asthmagen (ovalbumin). Respiratory tract MDI exposure significantly altered lung gene expression in both nonsensitized and immune-sensitized mice, vs controls. Fifty-three gene transcripts were altered in all MDI exposed lung tissue vs controls, with levels up to 10-fold higher in immune-sensitized vs nonsensitized mice. Gene transcripts selectively increased in MDI exposed immune-sensitized animals were dominated by chitinases and chemokines and showed substantial overlap with those increased in ovalbumin-induced asthma. In contrast, MDI exposure of nonsensitized mice increased type I interferon stimulated genes (ISGs) in a pattern reflecting deficiency in adenosine deaminase acting against RNA (ADAR-1), an important regulator of innate, as well as "sterile" or autoimmunity triggered by tissue damage. Thus, MDI-induced changes in lung gene expression were identified that differentiate nonpathogenic innate responses in nonsensitized hosts from pathologic adaptive responses in immune-sensitized hosts. The data suggest that MDI alters unique biological pathways involving ISGs and ADAR-1, potentially explaining its unique immunogenicity/allergenicity.


Asthma , Interferons , Animals , Mice , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Allergens/immunology , Allergens/toxicity , Asthma/chemically induced , Asthma/genetics , Gene Expression , Interferons/immunology , Interferons/metabolism , Isocyanates , Lung/metabolism , Ovalbumin
4.
Proc Natl Acad Sci U S A ; 121(12): e2319235121, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38466838

A-to-I RNA editing catalyzed by adenosine-deaminase-acting-on-RNA (ADARs) was assumed to be unique to metazoans because fungi and plants lack ADAR homologs. However, genome-wide messenger RNA (mRNA) editing was found to occur specifically during sexual reproduction in filamentous ascomycetes. Because systematic characterization of adenosine/cytosine deaminase genes has implicated the involvement of TAD2 and TAD3 orthologs in A-to-I editing, in this study, we used genetic and biochemical approaches to characterize the role of FgTAD2, an essential adenosine-deaminase-acting-on-tRNA (ADAT) gene, in mRNA editing in Fusarium graminearum. FgTAD2 had a sexual-stage-specific isoform and formed heterodimers with enzymatically inactive FgTAD3. Using a repeat-induced point (RIP) mutation approach, we identified 17 mutations in FgTAD2 that affected mRNA editing during sexual reproduction but had no effect on transfer RNA (tRNA) editing and vegetative growth. The functional importance of the H352Y and Q375*(nonsense) mutations in sexual reproduction and mRNA editing were confirmed by introducing specific point mutations into the endogenous FgTAD2 allele in the wild type. An in vitro assay was developed to show that FgTad2-His proteins purified from perithecia, but not from vegetative hyphae, had mRNA editing activities. Moreover, the H352Y mutation affected the enzymatic activity of FgTad2 to edit mRNA but had no effect on its ADAT activity. We also identified proteins co-purified with FgTad2-His by mass spectrometry analysis and found that two of them have the RNA recognition motif. Taken together, genetic and biochemical data from this study demonstrated that FgTad2, an ADAT, catalyzes A-to-I mRNA editing with the stage-specific isoform and cofactors during sexual reproduction in fungi.


Ascomycota , RNA Editing , RNA Editing/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ascomycota/genetics , Adenosine Deaminase/metabolism , RNA, Transfer/metabolism , Protein Isoforms/genetics , Adenosine/metabolism
5.
Epigenetics ; 19(1): 2333665, 2024 Dec.
Article En | MEDLINE | ID: mdl-38525798

Although A-to-I RNA editing leads to similar effects to A-to-G DNA mutation, nonsynonymous RNA editing (recoding) is believed to confer its adaptiveness by 'epigenetically' regulating proteomic diversity in a temporospatial manner, avoiding the pleiotropic effect of genomic mutations. Recent discoveries on the evolutionary trajectory of Ser>Gly auto-editing site in insect Adar gene demonstrated a selective advantage to having an editable codon compared to uneditable ones. However, apart from pure observations, quantitative approaches for justifying the adaptiveness of individual RNA editing sites are still lacking. We performed a comparative genomic analysis on 113 Diptera species, focusing on the Adar Ser>Gly auto-recoding site in Drosophila. We only found one species having a derived Gly at the corresponding site, and this occurrence was significantly lower than genome-wide random expectation. This suggests that the Adar Ser>Gly site is unlikely to be genomically replaced with G during evolution, and thus indicating the advantage of editable status over hardwired genomic alleles. Similar trends were observed for the conserved Ile>Met recoding in gene Syt1. In the light of evolution, we established a comparative genomic approach for quantitatively justifying the adaptiveness of individual editing sites. Priority should be given to such adaptive editing sites in future functional studies.


Drosophila Proteins , RNA Editing , Animals , Proteomics , DNA Methylation , Mutation , Drosophila/genetics , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Drosophila Proteins/genetics
6.
Trends Cancer ; 10(4): 280-282, 2024 Apr.
Article En | MEDLINE | ID: mdl-38458943

Understanding the mechanisms underlying the generation and maintenance of leukemia stem cells (LSCs) is crucial for the development of effective therapies against T cell acute lymphoblastic leukemia (T-ALL). In a recent study, Rivera et al. discovered that elevated adenosine deaminase acting on RNA (ADAR)-1-mediated RNA editing is a distinguishing feature of T-ALL relapse, and that ADAR1 suppresses apoptosis triggered by the double-stranded (ds)RNA-sensing pathway.


Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , RNA, Double-Stranded/genetics , Stem Cells/metabolism , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism
7.
J Am Chem Soc ; 146(11): 7584-7593, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38469801

Given the prevalent advancements in DNA- and RNA-based PROTACs, there remains a significant need for the exploration and expansion of more specific DNA-based tools, thus broadening the scope and repertoire of DNA-based PROTACs. Unlike conventional A- or B-form DNA, Z-form DNA is a configuration that exclusively manifests itself under specific stress conditions and with specific target sequences, which can be recognized by specific reader proteins, such as ADAR1 or ZBP1, to exert downstream biological functions. The core of our innovation lies in the strategic engagement of Z-form DNA with ADAR1 and its degradation is achieved by leveraging a VHL ligand conjugated to Z-form DNA to recruit the E3 ligase. This ingenious construct engendered a series of Z-PROTACs, which we utilized to selectively degrade the Z-DNA-binding protein ADAR1, a molecule that is frequently overexpressed in cancer cells. This meticulously orchestrated approach triggers a cascade of PANoptotic events, notably encompassing apoptosis and necroptosis, by mitigating the blocking effect of ADAR1 on ZBP1, particularly in cancer cells compared with normal cells. Moreover, the Z-PROTAC design exhibits a pronounced predilection for ADAR1, as opposed to other Z-DNA readers, such as ZBP1. As such, Z-PROTAC likely elicits a positive immunological response, subsequently leading to a synergistic augmentation of cancer cell death. In summary, the Z-DNA-based PROTAC (Z-PROTAC) approach introduces a modality generated by the conformational change from B- to Z-form DNA, which harnesses the structural specificity intrinsic to potentiate a selective degradation strategy. This methodology is an inspiring conduit for the advancement of PROTAC-based therapeutic modalities, underscoring its potential for selectivity within the therapeutic landscape of PROTACs to target undruggable proteins.


DNA, Z-Form , Proteolysis Targeting Chimera , Proteolysis , Adenosine Deaminase/metabolism , RNA/metabolism , Ubiquitin-Protein Ligases/metabolism , DNA-Binding Proteins/metabolism
8.
Sci Adv ; 10(9): eadk0820, 2024 Mar.
Article En | MEDLINE | ID: mdl-38427731

Chronic and aberrant nucleic acid sensing causes type I IFN-driven autoimmune diseases, designated type I interferonopathies. We found a significant reduction of regulatory T cells (Tregs) in patients with type I interferonopathies caused by mutations in ADAR1 or IFIH1 (encoding MDA5). We analyzed the underlying mechanisms using murine models and found that Treg-specific deletion of Adar1 caused peripheral Treg loss and scurfy-like lethal autoimmune disorders. Similarly, knock-in mice with Treg-specific expression of an MDA5 gain-of-function mutant caused apoptosis of peripheral Tregs and severe autoimmunity. Moreover, the impact of ADAR1 deficiency on Tregs is multifaceted, involving both MDA5 and PKR sensing. Together, our results highlight the dysregulation of Treg homeostasis by intrinsic aberrant RNA sensing as a potential determinant for type I interferonopathies.


Autoimmune Diseases , Nucleic Acids , Humans , Mice , Animals , Autoimmunity , RNA , T-Lymphocytes, Regulatory , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism
9.
Cancer Res Commun ; 4(4): 986-1003, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38530197

Detection of viral double-stranded RNA (dsRNA) is an important component of innate immunity. However, many endogenous RNAs containing double-stranded regions can be misrecognized and activate innate immunity. The IFN-inducible ADAR1-p150 suppresses dsRNA sensing, an essential function for adenosine deaminase acting on RNA 1 (ADAR1) in many cancers, including breast. Although ADAR1-p150 has been well established in this role, the functions of the constitutively expressed ADAR1-p110 isoform are less understood. We used proximity labeling to identify putative ADAR1-p110-interacting proteins in breast cancer cell lines. Of the proteins identified, the RNA helicase DHX9 was of particular interest. Knockdown of DHX9 in ADAR1-dependent cell lines caused cell death and activation of the dsRNA sensor PKR. In ADAR1-independent cell lines, combined knockdown of DHX9 and ADAR1, but neither alone, caused activation of multiple dsRNA sensing pathways leading to a viral mimicry phenotype. Together, these results reveal an important role for DHX9 in suppressing dsRNA sensing by multiple pathways. SIGNIFICANCE: These findings implicate DHX9 as a suppressor of dsRNA sensing. In some cell lines, loss of DHX9 alone is sufficient to cause activation of dsRNA sensing pathways, while in other cell lines DHX9 functions redundantly with ADAR1 to suppress pathway activation.


Adenosine Deaminase , Breast Neoplasms , DEAD-box RNA Helicases , Neoplasm Proteins , RNA-Binding Proteins , Female , Humans , Breast Neoplasms/genetics , Cell Line , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Immunity, Innate , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , RNA, Double-Stranded/genetics , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Cell Line, Tumor
10.
Biochemistry ; 63(6): 777-787, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38437710

The left-handed Z-conformation of nucleic acids can be adopted by both DNA and RNA when bound by Zα domains found within a variety of viral and innate immune response proteins. While Z-form adoption is preferred by certain sequences, such as the commonly studied (CpG)n repeats, Zα has been reported to bind to a wide range of sequence contexts. Studying how Zα interacts with B-/A-form helices prior to their conversion to the Z-conformation is challenging as binding coincides with Z-form adoption. Here, we studied the binding of Zα fromHomo sapiens ADAR1 to a locked "A-type" version of the (CpG)3 construct (LNA (CpG)3) where the sugar pucker is locked into the C3'-endo/C2'-exo conformation, which prevents the duplex from adopting the alternating C2'/C3'-endo sugar puckers found in the Z-conformation. Using NMR and other biophysical techniques, we find that ZαADAR1 binds to the LNA (CpG)3 using a similar interface as for Z-form binding, with a dissociation constant (KD) of ∼4 µM. In contrast to Z-DNA/Z-RNA, where two ZαADAR1 bind to every 6 bp stretch, our data suggests that ZαADAR1 binds to multiple LNA molecules, indicating a completely different binding mode. Because ZαADAR1 binds relatively tightly to a non-Z-form model, its binding to B/A-form helices may need to be considered when experiments are carried out which attempt to identify the Z-form targets of Zα domains. The use of LNA constructs may be beneficial in experiments where negative controls for Z-form adoption are needed.


DNA, Z-Form , Nucleic Acids , Nucleic Acid Conformation , Binding Sites , RNA , Sugars , Adenosine Deaminase/metabolism
11.
RNA ; 30(5): 500-511, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38531645

Innate immunity must be tightly regulated to enable sensitive pathogen detection while averting autoimmunity triggered by pathogen-like host molecules. A hallmark of viral infection, double-stranded RNAs (dsRNAs) are also abundantly encoded in mammalian genomes, necessitating surveillance mechanisms to distinguish "self" from "nonself." ADAR1, an RNA editing enzyme, has emerged as an essential safeguard against dsRNA-induced autoimmunity. By converting adenosines to inosines (A-to-I) in long dsRNAs, ADAR1 covalently marks endogenous dsRNAs, thereby blocking the activation of the cytoplasmic dsRNA sensor MDA5. Moreover, beyond its editing function, ADAR1 binding to dsRNA impedes the activation of innate immune sensors PKR and ZBP1. Recent landmark studies underscore the utility of silencing ADAR1 for cancer immunotherapy, by exploiting the ADAR1-dependence developed by certain tumors to unleash an antitumor immune response. In this perspective, we summarize the genetic and mechanistic evidence for ADAR1's multipronged role in suppressing dsRNA-mediated autoimmunity and explore the evolving roles of ADAR1 as an immuno-oncology target.


Adenosine Deaminase , RNA Editing , Animals , Adenosine Deaminase/metabolism , Immunity, Innate/genetics , Interferon-Induced Helicase, IFIH1/genetics , Mammals/genetics , RNA, Double-Stranded/genetics , Humans
12.
RNA ; 30(5): 512-520, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38531652

Inosine (I), resulting from the deamination of adenosine (A), is a prominent modification in the human transcriptome. The enzymes responsible for the conversion of adenosine to inosine in human mRNAs are the ADARs (adenosine deaminases acting on RNA). Inosine modification introduces a layer of complexity to mRNA processing and function, as it can impact various aspects of RNA biology, including mRNA stability, splicing, translation, and protein binding. The relevance of this process is emphasized in the growing number of human disorders associated with dysregulated A-to-I editing pathways. Here, we describe the impact of the A-to-I conversion on the structure and stability of duplex RNA and on the consequences of this modification at different locations in mRNAs. Furthermore, we highlight specific open questions regarding the interplay between inosine formation in duplex RNA and the innate immune response.


RNA Editing , RNA , Humans , RNA, Messenger/metabolism , RNA/genetics , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Inosine/metabolism , Adenosine/genetics , Adenosine/metabolism
13.
RNA ; 30(5): 521-529, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38531651

In this article, I recount my memories of key experiments that led to my entry into the RNA editing/modification field. I highlight initial observations made by the pioneers in the ADAR field, and how they fit into our current understanding of this family of enzymes. I discuss early mysteries that have now been solved, as well as those that still linger. Finally, I discuss important, outstanding questions and acknowledge my hope for the future of the RNA editing/modification field.


Adenosine Deaminase , RNA , RNA/genetics , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , RNA Editing , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Inosine/metabolism , RNA, Double-Stranded
14.
In Vivo ; 38(2): 683-690, 2024.
Article En | MEDLINE | ID: mdl-38418109

BACKGROUND/AIM: Adenosine deaminase family acting on RNA 1 (ADAR1) expression was examined to determine its correlation with endometriosis. The biological functions and inhibitory effects of ADAR1 knockdown were investigated in a human endometriotic cell line. MATERIALS AND METHODS: ADAR1 was examined in patients with and without endometriosis using reverse transcription polymerase chain reaction (RT-PCR), and the apoptotic expression of ADAR1 small interfering RNA (siRNA) was confirmed using flow cytometry. The biological functions and inhibitory effects of ADAR1 knockdown were investigated using RT-PCR in a 12Z immortalized human endometriotic cell line. RESULTS: ADAR1 expression was significantly higher in patients with endometriosis than in those without (p<0.001). ADAR1 siRNA increased early and late apoptosis, compared to the mock (24.83%) and control (19.96%) cells. ADAR1 knockdown led to apoptosis through MDA5, RIG-I, IRF3, IRF7, caspase 3, caspase 7, and caspase 8 expression in the cell lines. CONCLUSION: ADAR1 is a potential novel therapeutic target in endometriosis.


Adenosine Deaminase , Endometriosis , Female , Humans , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Endometriosis/genetics , Cell Line , RNA, Small Interfering/genetics , Caspase 3
15.
Nat Cell Biol ; 26(3): 421-437, 2024 Mar.
Article En | MEDLINE | ID: mdl-38409327

Type 1 diabetes (T1D) is characterized by the destruction of pancreatic ß-cells. Several observations have renewed the interest in ß-cell RNA sensors and editors. Here, we report that N6-methyladenosine (m6A) is an adaptive ß-cell safeguard mechanism that controls the amplitude and duration of the antiviral innate immune response at T1D onset. m6A writer methyltransferase 3 (METTL3) levels increase drastically in ß-cells at T1D onset but rapidly decline with disease progression. m6A sequencing revealed the m6A hypermethylation of several key innate immune mediators, including OAS1, OAS2, OAS3 and ADAR1 in human islets and EndoC-ßH1 cells at T1D onset. METTL3 silencing enhanced 2'-5'-oligoadenylate synthetase levels by increasing its mRNA stability. Consistently, in vivo gene therapy to prolong Mettl3 overexpression specifically in ß-cells delayed diabetes progression in the non-obese diabetic mouse model of T1D. Mechanistically, the accumulation of reactive oxygen species blocked upregulation of METTL3 in response to cytokines, while physiological levels of nitric oxide enhanced METTL3 levels and activity. Furthermore, we report that the cysteines in position C276 and C326 in the zinc finger domains of the METTL3 protein are sensitive to S-nitrosylation and are important to the METTL3-mediated regulation of oligoadenylate synthase mRNA stability in human ß-cells. Collectively, we report that m6A regulates the innate immune response at the ß-cell level during the onset of T1D in humans.


Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Animals , Humans , Mice , Adenosine Deaminase/metabolism , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/metabolism , Immunity, Innate , Insulin-Secreting Cells/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Oxidation-Reduction
16.
BMC Biol ; 22(1): 37, 2024 Feb 16.
Article En | MEDLINE | ID: mdl-38360623

BACKGROUND: In all organisms, the innate immune system defends against pathogens through basal expression of molecules that provide critical barriers to invasion and inducible expression of effectors that combat infection. The adenosine deaminase that act on RNA (ADAR) family of RNA-binding proteins has been reported to influence innate immunity in metazoans. However, studies on the susceptibility of ADAR mutant animals to infection are largely lacking. RESULTS: Here, by analyzing adr-1 and adr-2 null mutants in well-established slow-killing assays, we find that both Caenorhabditis elegans ADARs are important for organismal survival to gram-negative and gram-positive bacteria, all of which are pathogenic to humans. Furthermore, our high-throughput sequencing and genetic analysis reveal that ADR-1 and ADR-2 function in the same pathway to regulate collagen expression. Consistent with this finding, our scanning electron microscopy studies indicate adr-1;adr-2 mutant animals also have altered cuticle morphology prior to pathogen exposure. CONCLUSIONS: Our data uncover a critical role of the C. elegans ADAR family of RNA-binding proteins in promoting cuticular collagen expression, which represents a new post-transcriptional regulatory node that influences the extracellular matrix. In addition, we provide the first evidence that ADAR mutant animals have altered susceptibility to infection with several opportunistic human pathogens, suggesting a broader role of ADARs in altering physical barriers to infection to influence innate immunity.


Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Humans , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , RNA Editing , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Collagen/genetics , Collagen/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
17.
Cell Rep ; 43(1): 113643, 2024 01 23.
Article En | MEDLINE | ID: mdl-38175748

CD73-derived adenosine suppresses anti-cancer immunity, and CD73 inhibitors are currently evaluated in several clinical trials. Here, we have assessed enzyme kinetics of all key purinergic ectoenzymes in five cancer cell lines (Hodgkin lymphoma, multiple myeloma, pancreas adenocarcinoma, urinary bladder carcinoma, and glioblastoma) under normoxia and hypoxia. We found that adenosine metabolism varied considerably between individual cancer types. All cell lines investigated exhibited high ecto-adenosine deaminase (ADA) activity, which critically influenced the kinetics of adenosine accumulation. Combining kinetics data with single-cell RNA sequencing data on myeloma and glioblastoma cancerous tissue revealed that purine metabolism is not homogeneously organized, but it differs in a cancer type-specific fashion between malignant cells, stromal cells, and immune cells. Since purine metabolism in cancerous tissue is most likely spatially heterogeneous and differs between the various cell types, diffusion distances in the microenvironment as well as ADA activity may be important variables that influence the level of bioactive adenosine.


Glioblastoma , Multiple Myeloma , Humans , Adenosine/metabolism , Adenosine Monophosphate/metabolism , 5'-Nucleotidase/metabolism , Signal Transduction , Adenosine Deaminase/metabolism , Tumor Microenvironment
18.
Cell Mol Biol Lett ; 29(1): 14, 2024 Jan 16.
Article En | MEDLINE | ID: mdl-38225555

Rheumatoid arthritis (RA) is an autoimmune disease involving T and B lymphocytes. Autoantibodies contribute to joint deterioration and worsening symptoms. Adenosine deaminase (ADA), an enzyme in purine metabolism, influences adenosine levels and joint inflammation. Inhibiting ADA could impact RA progression. Intracellular ATP breakdown generates adenosine, which increases in hypoxic and inflammatory conditions. Lymphocytes with ADA play a role in RA. Inhibiting lymphocytic ADA activity has an immune-regulatory effect. Synovial fluid levels of ADA are closely associated with the disease's systemic activity, making it a useful parameter for evaluating joint inflammation. Flavonoids, such as quercetin (QUE), are natural substances that can inhibit ADA activity. QUE demonstrates immune-regulatory effects and restores T-cell homeostasis, making it a promising candidate for RA therapy. In this review, we will explore the impact of QUE in suppressing ADA and reducing produced the inflammation in RA, including preclinical investigations and clinical trials.


Adenosine Deaminase Inhibitors , Arthritis, Rheumatoid , Quercetin , Humans , Adenosine , Adenosine Deaminase/metabolism , Arthritis, Rheumatoid/drug therapy , Inflammation/drug therapy , Quercetin/pharmacology , Adenosine Deaminase Inhibitors/pharmacology
19.
Biochem Biophys Res Commun ; 695: 149373, 2024 Feb 05.
Article En | MEDLINE | ID: mdl-38176170

Recent studies have revealed that tumor immunotherapy resistance is influenced by ADAR-mediated RNA editing, but its targets remain unelucidated. Our current study identified the poliovirus receptor (PVR) oncogene, which encodes an immune checkpoint in colorectal cancer (CRC), as a potential target for RNA editing. We performed transcriptome sequencing analysis and experimental validation in two Chinese CRC cohorts. PVR and ADAR expressions significantly increased in CRC tumors and showed positive correlations in both cohorts, coupled with upregulated PVR RNA editing in CRC tumors. Manipulation of ADAR expression by over-expression or knockdown substantially changed PVR expression and RNA editing in HTC116 CRC cells. Luciferase reporter and actinomycin D assays further revealed that RNA editing in PVR 3'-UTR could upregulate PVR RNA expression, probably by increasing the RNA stability. By increasing PVR expression, ADAR-mediate RNA editing might contribute to tumor- and immune-related gene functions and pathways in CRC. Moreover, a signature combining PVR RNA editing and expression showed promising predictive performance in CRC diagnosis in both Chinese CRC cohorts. Our findings thus highlight the importance of ADAR-mediated RNA editing in PVR up-regulation in CRC tumors and provide new insight into the application of PVR RNA editing as a novel diagnostic biomarker for CRC.


Colorectal Neoplasms , RNA-Binding Proteins , Receptors, Virus , Humans , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Colorectal Neoplasms/genetics , Gene Expression Profiling , RNA Editing/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Immune Checkpoint Proteins/genetics , Immune Checkpoint Proteins/metabolism
20.
Nucleus ; 15(1): 2304503, 2024 Dec.
Article En | MEDLINE | ID: mdl-38286757

Adar-mediated adenosine-to-inosine (A-to-I) RNA editing mainly occurs in nucleus and diversifies the transcriptome in a flexible manner. It has been a challenging task to identify beneficial editing sites from the sea of total editing events. The functional Ser>Gly auto-recoding site in insect Adar gene has uneditable Ser codons in ancestral nodes, indicating the selective advantage to having an editable status. Here, we extended this case study to more metazoan species, and also looked for all Drosophila recoding events with potential uneditable synonymous codons. Interestingly, in D. melanogaster, the abundant nonsynonymous editing is enriched in the codons that have uneditable counterparts, but the Adar Ser>Gly case suggests that the editable orthologous codons in other species are not necessarily edited. The use of editable versus ancestral uneditable codon is a smart way to infer the selective advantage of RNA editing, and priority might be given to these editing sites for functional studies due to the feasibility to construct an uneditable allele. Our study proposes an idea to narrow down the candidates of beneficial recoding sites. Meanwhile, we stress that the matched transcriptomes are needed to verify the conservation of editing events during evolution.


Drosophila Proteins , RNA , Animals , RNA/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , RNA Editing/genetics , Inosine/genetics , Codon , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Drosophila Proteins/genetics
...